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Abstract— Some recent medical imaging applications, such
as functional imaging (PET and SPECT) or interventional
imaging (CT fluoroscopy) involves dynamic data. The image
reconstruction time must be reduced. For that purpose, we
developed a new fast algorithm for dynamic reconstruction
based on frequential hierarchical reconstruction.

Our algorithm performs an indirect subband decomposi-
tion of the image f to be reconstructed (f = ) f;) through
the filtering of the projection Rf. The subband images f; can
be reconstructed on an undersampled grid without informa-
tion suppression. In order to reduce the computation time,
we undersample the number of projections and we choose
them in accordance with the undersampled grid. But image
compression can also be made directly in our algorithm by
elimination of some frequential components with low infor-
mation content.

Keywords— Fast reconstruction algorithm, frequential de-
composition, angular undersampling, computation compres-
sion.

I. INTRODUCTION

T acquisition systems involve increasing amounts of

data. Moreover, for many medical applications, the
computation time must be lowered. There are even some
applications for which real time is required. Two main
fields of medical imaging need dynamic reconstructions,
namely functional imaging (PET and SPECT) and inter-
ventional imaging (CT fluoroscopy, 3D guidance) [1], [2],
[3]. Fast tomographic reconstruction is currently a very
active research domain [4], [5], [6].

In this paper, we present a fast algorithm for dynamic
reconstruction. In our reconstruction algorithm, we imple-
ment the two following ideas to speed-up the reconstruction
time: the first is to reconstruct some frequentials compo-
nents with reduced number of projections, the second is to
achieve computation compression. The frequential recon-
struction allows to reconstruct each frequential component
on an undersampled grid, and to use only a lower num-
ber of undersampled projections. Our algorithm associates
this undersampling approach with computation compres-
sion (see [7]). The computation compression is based on
the data compression principle. Our algorithm can gener-
ate directly compressed data.

In the first section, we introduce our notations. In the
second section, we present the frequential reconstruction
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principle. Then, we expose the speed up factors of our
algorithm: the angular undersampling, the computation
compression and the block processing. The last section
shows numerical applications of our algorithm on both a
static 3D phantom and a dynamic 2D phantom.
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Fig. 1. Our algorithm

II. NOTATIONS

We define the Fourier transform f of a function f €
L'(R?) by:
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Let s € R, and § € S!, where S! is the unit circle, we
denote the Radon transform R by:

Rf(6,5) = / £(s6 + y)dy.
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We denote by R! the backprojection operator and by I
the ramp filter. We define the functions g; € S(R?) as
the inverse Fourier transform of adjacent band indicators
such that Y27, g; is the indicator function of a domain

covering the essential support of the function f . Then, we
denote each elementary frequential component of f: f,, =

fxg1,..., fg. = f *9n.

2 N N
B? FFT2D & x &



III. RECONSTRUCTION ALGORITHM USING A
DECOMPOSITION STEP

The main idea of our approach is to reconstruct B2 fre-

quential component f,. of f independently using f,, =
f *g; = RFI(Rf * Rg;) (see [7]). This allows us to un-
dersample the number of projection and to compress the
computation like in data compression.
We want to reconstruct B? frequential components of f
without knowing the image f, but only its projections Rf.
Also we must do an indirect decomposition of f through
Rf. The projection slice theorem (see [8]) yields a direct
relation between f and R f Thus we can find a filter Rg;
to apply to Rf which leads to the decomposition of f into
the sum of f,, (for a theoretical justification see [7] ).
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Fig. 2. Indirect decomposition scheme
A. Indirect decomposition step

The step of indirect decomposition (see figure 1) consists
of generating the Rf,, with j € [0, B?] by filtering Rf. We
implement this filtering in the Fourier space to reduce the
computation time of this step. We can see on the figure 2a
the Fourier transform of one projection (Rf(6;)) is local-
ized on a line in the Fourier space. The decomposition of
this projection on the indicator function g; is the intersec-
tion between the line and the square §; (see the figure 2a).
On the figure 2b , we can see the result of the indirect de-
composition R f . Let us underline that R f ;(0) is equal
to zero when the 11ne R f (8) do not intersect the square g;.

We will use this property in the next section to reduce the
computation time.

B. Backprojection step

In this step we backproject the B? sets of projection
Rf,, to obtain the frequential components f,,. According
to the sampling theory, the function f,, can be represented
by B? times less pixel than f. Indeed the undersampling
by B? of fg; in the direct space leads to a periodisation of
g; in the Fourier space. The function g§; is localized on a
little square. When the sampling rate is equal to B pixels
along each axis, squares do not overlap. Thus the under-
sampling by B? preserves all the information contained in
the function f,.. Thus we can backproject Rf,. on an un-
dersampled grid. Finally, as we make B? backprojections
on B? undersampled grids, the backprojection step com-
putation cost is the same as for a classical algorithm.
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IV. ANALYZE OF THE SPEED UP
A. Angular undersampling

The projections of the frequential components fy, are
usually equal to zero for 6 outside of an relative small i/n\ter—
val 0 ¢ [Omin,Omaz] (see figure 3, VO ¢ [Omin, Omaz); fos =
0). We use this property to reduce the backprojection time.
In our algorithm when we reconstruct the frequential com-
ponents f,., we backproject only the angle between the cor-
responding 0, and 6,,,,.. The speed up obtained depends
on the frequential component. For example, we backpro-
ject all angle for f,, and only approximatively % angles
for the frequential component f,,_,, if B is large (Ng de-
notes the number of projections). To analyze the speed up
factor obtained by this angular undersampling we count
the contribution of the projection to the backprojection of
each frequential component. Each projection Rf(6) con-
tributes to less than 2B frequential components (see figure

2). Thus the number of contributions per bloc is less than
2BN;/B? = 2N,/B. Thus we win at least a factor 5 com-
pare to the backprojection seen in the previous paragraph
The elimination of the zero projection can be considered
as an angular undersampling. If we respect the sampling
condition to reconstruct f, and if we reconstruct the fre-
quential component f,. on a B? undersampled grid, we can
backproject B times less projections.



B. Computation compression

The computation compression will have the same fun-
damental steps as the data compression. We want also
to preserve only the pertinent information and we want to
code it with as few bytes as possible. To achieve this result,
we decompose the image f in frequential components f,,,
and we compute only the components containing pertinent
informations. We denote “quantification”, the elimination
step of frequential components (see figure 1). This step
corresponds to ||f - §;||2 < €, where the parameter € > 0 is
given and controls the compression rate. Thus, the num-
ber of components is reduced from factor depending on the
value e. As for data compression, information will be lost
if € becomes high.

C. Block processing and parallelism

Most of uniprocessor systems have hierarchical mem-
ory. It is composed of various levels of cache memory, a
main memory and disk storage. Movement of data be-
tween two levels in the hierarchy represents latency time
cost. To compute efficiently, we must reduce data move-
ment. Our approach allows to reconstruct some undersam-
pled pictures. If an undersampled picture can be contained
in cache memory, the data movement are minimized. Our
approach allows to adapt the reconstruction computation
to the size of the cache memory and thus to the computer.
It is the well known block effect. Because our algorithm
is naturally divided on B? elementary reconstructions, it
can be easily adapted on multiprocessor systems. Owing
to the block structure data movement between processor is
minimized. In shared memory system, data movement be-
tween processor is made through the main memory. These
access are limited band width, thus efficiency is improved
by reducing memory access in this case too. Our algorithm
natural block structure yields efficient computations.
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Fig. 4. Reconstruction of a volume 512x512x 32: reference (left), our
algorithm with 64 frequential components (center), difference (right).

V. APPLICATION

In this section, we make numerical experiment on two
types of phantom: a 3D static phantom to evaluate the op-
timal number of frequential components and a 2D dynamic
phantom to obtain the maximum performance of our algo-
rithm.

A. Static phantom

For our first test, we reconstruct a 3D static phantom f
(see phantom definition Table I). The reconstructions are

Sphere Center (mm) Radius(mm) | Attenuation
number X y Z r At

1 0.0 | 0.0 | 0.0 200 15

2 0.0 | -100 | 0.0 10.0 35

3 -100 | 0.0 | 0.0 20 35

4 100 | 0.0 | 0.0 40 35

) 0.0 | 100 | 0.0 80.0 35

TABLE 1

Definition of our 3D phantom

calculated on a 512 x 512 x 32 voxel grid (with x, y and z
resolution equal to 1,04 mm), using a subset of the projec-
tions collected on 512 angles, uniformly spaced over [0, 7.
We compare our reconstruction with a classical filtered
back projection (FBP) algorithm (fig. 4). We observe some
artifact on the difference image caused by numerical ap-
proximation, but in the case of 64 frequential components,
the level on these artifacts is less or equal to 1 %. To
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Fig. 5. Reconstruction CPU time of a volume 512 X 512 x 32

highlight the angular undersampling effect, we execute our
algorithm with different numbers B? of frequential compo-
nents without quantification. Indeed, we have seen in part
IV-A that the speed up factor is proportional to B. Theo-
retically, the CPU time becomes shorter with big numbers
of frequential components. The CPU time decreases up
to 64 frequential components but increases afterwards (see
figure 5). The first part of the curve is explained by angu-
lar undersampling described in part IV-A. The second part
of the curve is explained by supplementary computations
induced by our approach. Indeed, we can see on the figure
1, that the number of inverse Fourier transforms is equal to
Ny - 2B instead of Ny in a classical algorithm. This effect
becomes dominating for B2 > 64.

B. 2D dynamic phantom

For our second test, we reconstruct a 2D dynamic phan-
tom composed of 32 images f; with ¢ € [0,31] (see phantom
definition Table IT). The phantom motion is a translation
of 3 mm per frame along the y axis. In this case, the per-
tinent information is restricted to one oblic plane in the
spatio-temporal Fourier domain [9]. Thus, this dynamic
data contains a low number of pertinent information: a
lot of frequential components can be eliminated. The
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Circle Center (mm) Radius(mm) | Attenuation
number X y r At
1 00 | -454+3 x i 200 15
2 0.0 | -145+3 x4 10.0 35
3 -100 | -45+3 x4 20 35
4 100 | -454+3 %1 40 35
5 0.0 95+ 3 x i 80.0 35
6 00 | -454+3 x i 2.0 60
TABLE II

Definition of our 2D dynamic phantom: with i € [0,31]

32 reconstructions are calculated on a 512 x 512 pixel grid
(with x and y resolution equal to 1,04 mm), using the same
parameter as the previous experiment. During the recon-
struction we decompose each f; in 64 frequential compo-
nents. To highlight the quantification effect we reconstruct
the image sequence with two configurations: the first re-
construction with 38% of components (see figure 6b and
¢) and the second one with 22% of components (see figure

6d and e). The results are summarized on the table III.
Types of % of CPU | speed | relative
algorithm | components | time up L, error

FBP 100 754 1 0%
Our 100 290 2.6 1.09%
38 200 3.8 1.17%
algorithm 22 169 4.5 1.54%
TABLE III

CPU time and quality of dynamic reconstruction

We can observe that the first configuration allows to elim-
inate 62% of frequential components without deterioration
of the image quality. If 78% of components are eliminated,
pertinent information is lost (see figure 6e): some artifacts
appear in images. Even if a large number of components
are eliminated, the speed up factor is not very high. The
computation compression is thus only a secondary speed
up factor. This can still be interesting for some real time
applications, because we can adapt image quality for cpu
resource.

VI. CONCLUSION

Our subband Fourier decomposition speeds up the 3D
reconstruction. Moreover a compromise between speed up
and image quality can be improved through the compres-
sion factor. Alternatively decompositions such as Cosinus,
Wayvelet or Karhunen Loeéve decomposition could also be
used.
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